Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available December 11, 2025
- 
            Abstract The electronic properties of 2D materials play a critical role in determining their potential for device applications. Despite rapid developments in 2D semiconductors, studies of fundamental electronic parameters, including the electronic gap and ionization energy, are limited, with significant discrepancies in reported values. The study focuses on tungsten disulfide (WS₂) and investigates the electronic structure of films comprising an increasing number of layers deposited with two different methods: direct synthesis via metal–organic chemical vapor deposition (MOCVD) and additive mechanical transfer of exfoliated single layers. The films are characterized via Raman, UV–vis, and photoluminescence spectroscopies, as well as ultraviolet photoelectron and inverse photoemission spectroscopies (UPS/IPES). The electronic gap of WS₂ is found to decrease from 2.43 eV for the monolayer to 1.97 eV for the trilayer, indicating a bulk transition at the trilayer thickness. This reduction in the electronic gap is primarily due to the downward shift of the conduction band minimum relative to the valence band maximum. A comparative analysis with MOCVD‐grown WS₂ reveals a slightly larger electronic gap for MOCVD‐grown samples, attributed to differences in defect densities. The electronic levels evaluated through UPS/IPES highlight the significant influence of preparation methods on the electronic properties of WS₂.more » « less
- 
            null (Ed.)Electronic technologies critically rely on the ability to broadly dope the active semiconductor; yet the promising class of halide perovskite semiconductors so far does not allow for significant control over carrier type (p- or n-) and density. The molecular doping approach offers important opportunities for generating free carriers through charge transfer. In this work, we demonstrate effective p-doping of MAPb 0.5 Sn 0.5 I 3 films using the molecular dopant F4TCNQ as a grain boundary coating, offering a conductivity and hole density tuning range of up to five orders of magnitude, associated with a 190 meV Fermi level down-shift. While charge transfer between MAPb 0.5 Sn 0.5 I 3 and F4TCNQ appears efficient, dopant ionization decreases with increasing Pb content, highlighting the need for appropriate energy offset between host and dopant molecule. Finally, we show that electrical p-doping impacts the perovskite optoelectronic properties, with a hole recombination lifetime increase of over one order of magnitude, suggesting passivation of deep traps.more » « less
- 
            null (Ed.)To accelerate materials discovery, computational methods such as inverse materials design have been proposed to predict the properties of target compounds of interest for specific applications. This in silico process can be used to guide subsequent synthesis and characterization. Inverse design is especially relevant for the field of organic molecules, for which there are nearly infinite synthetic modifications possible. With a target application of UV-absorbing, visibly transparent solar cells in mind, we calculated the orbital and transition energies of over 360 possible coronene derivatives. Our screening, or the constraints we imposed on the calculated series, resulted in the selection of three new derivatives, namely contorted pentabenzocoronene (cPBC), contorted tetrabenzocoronene (cTBC), and contorted tetrabenzofuranylbenzocoronene (cTBFBC) for synthesis and characterization. Our materials characterization found agreement between our calculated and experimental energy values, and through testing of these materials in organic photovoltaic (OPV) devices, we fabricated solar cells with an open-circuit voltage of 1.84 V and an average visible transparency of 88% of the active layer; both quantities exceed previous records for visibly transparent coronene-based solar cells. This work highlights the promise of inverse materials design for future materials discovery, as well as improvements to an exciting application of UV-targeted solar cells.more » « less
- 
            The remarkable optoelectronic properties of metal halide perovskites have generated intense research interest over the last few years. The ability to control and manipulate the crystallisation and stoichiometry of perovskite thin-films has allowed for impressive strides in the development of highly efficient perovskite solar cells. However, being able to effectively modify the interfaces of metal halide perovskites, and to controllably p- or n-type dope the surfaces, may be key to further improvements in the efficiency and long-term stability of these devices. In this study, we use surface doping of the mixed-cation, mixed-halide perovskite FA 0.85 MA 0.15 Pb(I 0.85 Br 0.15 ) 3 (FA – formamidinium; MA – methylammonium) to improve the hole extraction from the perovskite solar cell. By treating the surface of the perovskite film with a strongly oxidizing molybdenum tris(dithiolene) complex, we achieve a shift in the work function that is indicative of p-doping, and a twofold increase in the total conductivity throughout the film. We probe the associated interfacial chemistry through photoelectron and solid-state nuclear magnetic resonance spectroscopies and confirm that charge-transfer occurs between the perovskite and dopant complex. The resulting p-doped interface constitutes a homojunction with increased hole-selectivity. With charge-selective layers, we show that this surface doping enhances the device performance of perovskite solar cells resulting in steady-state efficiencies approaching 21%. Finally, we demonstrate that a surface treatment with this dopant produces the same effect as the commonly employed additive 4- tert butylpyridine ( t BP), allowing us to achieve “ t BP-free” devices with steady-state efficiencies of over 20%, and enhanced thermal stability as compared to devices processed using t BP. Our findings therefore demonstrate that molecular doping is a feasible route to tune and control the surface properties of metal halide perovskites.more » « less
- 
            Abstract n‐Doping electron‐transport layers (ETLs) increases their conductivity and improves electron injection into organic light‐emitting diodes (OLEDs). Because of the low electron affinity and large bandgaps of ETLs used in green and blue OLEDs, n‐doping has been notoriously more difficult for these materials. In this work, n‐doping of the polymer poly[(9,9‐dioctylfluorene‐2,7‐diyl)‐alt‐(benzo[2,1,3]thiadiazol‐4,7‐diyl)] (F8BT) is demonstrated via solution processing, using the air‐stable n‐dopant (pentamethylcyclopentadienyl)(1,3,5‐trimethylbenzene)ruthenium dimer [RuCp*Mes]2. Undoped and doped F8BT films are characterized using ultraviolet and inverse photoelectron spectroscopy. The ionization energy and electron affinity of the undoped F8BT are found to be 5.8 and 2.8 eV, respectively. Upon doping F8BT with [RuCp*Mes]2, the Fermi level shifts to within 0.25 eV of the F8BT lowest unoccupied molecular orbital, which is indicative of n‐doping. Conductivity measurements reveal a four orders of magnitude increase in the conductivity upon doping and irradiation with ultraviolet light. The [RuCp*Mes]2‐doped F8BT films are incorporated as an ETL into phosphorescent green OLEDs, and the luminance is improved by three orders of magnitude when compared to identical devices with an undoped F8BT ETL.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
